Examveda

A rigid body is rotating about its centre of mass; fixed at origin with an angular velocity $$\overrightarrow \omega $$ and angular acceleration $$\overrightarrow \alpha $$. If the torque acting on it is $$\overrightarrow \tau $$ and its angular momentum is $$\overrightarrow {\bf{L}} $$, then the rate of change of its kinetic energy is

A. $$\frac{1}{2}\overrightarrow \tau \cdot \overrightarrow \omega $$

B. $$\frac{1}{2}\overrightarrow {\bf{L}} \cdot \overrightarrow \omega $$

C. $$\frac{1}{2}\left( {\overrightarrow \tau \cdot \overrightarrow \omega + \overrightarrow {\bf{L}} \cdot \overrightarrow \alpha } \right)$$

D. $$\frac{1}{2}\overrightarrow {\bf{L}} \cdot \overrightarrow \alpha $$

Answer: Option C


This Question Belongs to Engineering Physics >> Classical Mechanics

Join The Discussion

Related Questions on Classical Mechanics