A sequence x(n) with the z-transform X(z) = z4 + z2 - 2z + 2 - 3z-4 is applied as an input to a linear, time-invariant system with the impulse response h(n) = 2δ(n - 3) where
$$\delta \left( n \right) = \left\{ {\matrix{
{1,} & {n = 0} \cr
{0,} & {{\rm{otherwise}}} \cr
} } \right.$$
The output at n = 4 is
A. -6
B. Zero
C. 2
D. -4
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion