A series expansion for the function sin θ is
A. \[1 - \frac{{{\theta ^2}}}{{2!}} + \frac{{{\theta ^4}}}{{4!}} - \,...\]
B. \[\theta - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^5}}}{{5!}} - \,...\]
C. \[1 + \theta + \frac{{{\theta ^2}}}{{2!}} + \frac{{{\theta ^3}}}{{3!}} + \,...\]
D. \[\theta + \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^5}}}{{5!}} + \,...\]
Answer: Option B
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion