A signal m(t) band-limited to 3 kHz is sampled at a rate $$33\frac{1}{3}\% $$ higher than the Nyquist rate. The maximum acceptable error in the sample amplitude is 0.5% of the peak amplitude mp. The quantized samples are binary coded, then the minimum bandwidth of a channel required to transmit the encoded binary signal will be:
A. 20 kHz
B. 24 kHz
C. 28 kHz
D. 32 kHz
Answer: Option D
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion