A signal x(n) = sin(ω0n + f) is the input to a linear time-invariant system having a frequency response H(ejω). If ihe output of the system Ax(n - n0), then the most general form of ∠H(ejω) will be
A. -n0ω0 + β for any arbitrary real β
B. -n0ω0 + 2πk for any arbitrary integer k
C. n0ω0 + 2πk for any arbitrary integer k
D. $$ - {n_0}{\omega _0}\phi $$
Answer: Option B
Join The Discussion
Comments (1)
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

With explanation