A signals m(t) with bandwidth 500 Hz is first multiplied by a signal g(t) where $$g\left( t \right) = \sum\limits_{k = - \infty }^\infty {{{\left( { - 1} \right)}^k}\delta \left( {t - 0.5 \times {{10}^{ - 4}}k} \right)} $$
The resulting signal is then passed through an ideal low pass filter with bandwidth 1 kHz. The output of the low pass filter would be
A. δ(t)
B. m(t)
C. 0
D. m(t) δ(t)
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion