A sphere of unit radius is centered at the origin. The unit normal at a point (x, y, z) on the surface of the sphere is the vector
A. \[\left( {{\text{x, y, z}}} \right)\]
B. \[\left( {\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}} \right)\]
C. \[\left( {\frac{{\text{x}}}{{\sqrt 3 }},\,\frac{{\text{y}}}{{\sqrt 3 }},\,\frac{{\text{z}}}{{\sqrt 3 }}} \right)\]
D. \[\left( {\frac{{\text{x}}}{{\sqrt 2 }},\,\frac{{\text{y}}}{{\sqrt 2 }},\,\frac{{\text{z}}}{{\sqrt 2 }}} \right)\]
Answer: Option A
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion