A square wave is defined by \[x\left( t \right) = \left\{ \begin{gathered}
A,\,0 < t < \frac{{{T_0}}}{2} \hfill \\
- A,\,\frac{{{T_0}}}{2} < t < {T_0} \hfill \\
\end{gathered} \right.\]
It is periodically extended outside this interval. What is the general coefficient an in the Fourier expansion of this wave?
A. 0
B. $$\frac{{2A\left( {1 - \cos n\pi } \right)}}{{n\pi }}$$
C. $$\frac{{2A\left( {1 + \cos n\pi } \right)}}{{n\pi }}$$
D. $$\frac{{2A\left( {1 - \cos n\pi } \right)}}{{\left[ {\left( {n + 1} \right)\pi } \right]}}$$
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion