A stable Linear Time Invariant (LTI) system has a transfer function $${\text{H}}\left( {\text{s}} \right) = \frac{1}{{{{\text{s}}^2} + {\text{s}} - 6}}.$$ To make this system causal it needs to be cascaded with another LTI system having a transfer function H1(s). A correct choice for H1(s) among the following option is
A. s + 3
B. s - 2
C. s - 6
D. s + 1
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion