A system is described by the differential equation $${{{d^2}y} \over {d{t^2}}} + 5{{dy} \over {dt}} + 6y\left( t \right) = x\left( t \right).$$ Let x(t) be a rectangular pulse given by
$$x\left( t \right) = \left\{ {\matrix{
{1,} & {0 < t < 2} \cr
{0,} & {{\rm{otherwise}}} \cr
} } \right.$$
Assuming that y(0) = 0 and $${{dy} \over {dt}} = 0$$ at t = 0, the Laplace transform of y(t) is
A. $${{{e^{ - 2s}}} \over {s\left( {s + 2} \right)\left( {s + 3} \right)}}$$
B. $${{1 - {e^{ - 2s}}} \over {s\left( {s + 2} \right)\left( {s + 3} \right)}}$$
C. $${{{e^{ - 2s}}} \over {\left( {s + 2} \right)\left( {s + 3} \right)}}$$
D. $${{1 - {e^{ - 2s}}} \over {\left( {s + 2} \right)\left( {s + 3} \right)}}$$
Answer: Option B
Join The Discussion