A tap can fill a tank in $$5\frac{1}{2}$$ hours. Because of a leak, it took $$8\frac{1}{4}$$ hours to fill the tank. In how much time (in hours) will the leak alone empty 30% of the tank?
A. $$\frac{{17}}{2}$$
B. $$\frac{{99}}{{20}}$$
C. $$\frac{5}{2}$$
D. $$\frac{9}{2}$$
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {\text{I fill the tank}} = 5\frac{1}{2} = \frac{{11}}{2}{\text{ in hour}} \cr & {\text{I - II fill the tank}} = 8\frac{1}{4} = \frac{{33}}{4}{\text{ in hour}} \cr & {\text{LCM }}\left( {11,\,33} \right) = 33 \cr} $$
$$\eqalign{ & {\text{Total work }}30\% = 33 \times \frac{{30}}{{100}} = \frac{{99}}{{10}} \cr & {\text{II}} = {\text{leak pipe efficiency}} = 6 - 4 = 2 \cr} $$
Time taken by pipe to empty the tank = $$\frac{{99}}{{\frac{{10}}{2}}}$$ = $$\frac{{99}}{{20}}$$ in hour
Related Questions on Pipes and Cistern
A. $$\frac{5}{{11}}$$
B. $$\frac{6}{{11}}$$
C. $$\frac{7}{{11}}$$
D. $$\frac{8}{{11}}$$
A. $$1\frac{{13}}{{17}}$$ hours
B. $$2\frac{8}{{11}}$$ hours
C. $$3\frac{9}{{17}}$$ hours
D. $$4\frac{1}{2}$$ hours
A. $$4\frac{1}{3}$$ hours
B. 7 hours
C. 8 hours
D. 14 hours

Join The Discussion