An analytic function of a complex variable z = x + iy is expressed as f(z) = u(x, y) + iv(x, y) where $${\text{i}} = \sqrt { - 1} .$$ If u = xy, the expression for v should be
A. $$\frac{{{{\left( {{\text{x}} + {\text{y}}} \right)}^2}}}{2} + {\text{k}}$$
B. $$\frac{{{{\text{x}}^2} - {{\text{y}}^2}}}{2} + {\text{k}}$$
C. $$\frac{{{{\text{y}}^2} - {{\text{x}}^2}}}{2} + {\text{k}}$$
D. $$\frac{{{{\left( {{\text{x}} - {\text{y}}} \right)}^2}}}{2} + {\text{k}}$$
Answer: Option C
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$

Join The Discussion