An integral $$I$$ over a counter-clockwise circle C is given by $$I = \oint_{\text{C}} {\frac{{{{\text{z}}^2} - 1}}{{{{\text{z}}^2} + 1}}{{\text{e}}^{\text{z}}}{\text{dz}}{\text{.}}} $$
If C is defined as |z| = 3, then the value of $$I$$ is
A. -πi sin(1)
B. -2πi sin(1)
C. -3πi sin(1)
D. -4πi sin(1)
Answer: Option D
Related Questions on Complex Variable
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$

Join The Discussion