Answer & Solution
Answer: Option C
Solution:
Let P be the point inside the equilateral ΔABC
Let, PD = √3, PE = 2√3, PF = 5√3 and AB = BC = AC = $$x$$
$$\eqalign{
& {\text{ar}}{\text{.}}\,\Delta {\text{ABC}} = {\text{ar}}{\text{.}}\,\Delta {\text{ABP}} + {\text{ar}}{\text{.}}\,\Delta {\text{ACP}} + {\text{ar}}{\text{.}}\,\Delta {\text{BCP}} \cr
& \frac{{\sqrt 3 }}{4}{x^2} = \frac{1}{2} \times x \times \sqrt 3 + \frac{1}{2} \times x \times 2\sqrt 3 + \frac{1}{2} \times x \times 5\sqrt 3 \cr
& \sqrt 3 x = 2\sqrt 3 + 4\sqrt 3 + 10\sqrt 3 \cr
& x = 16 \cr} $$
∴ Perimeter of triangle = 3$$x$$ = 3 × 16 = 48 cm