81. If sinA = $$\frac{4}{5}$$ and sinB = $$\frac{{15}}{{17}},$$ what is the value of sin(A - B)?
						
					82. If 0° < θ < 90° and cos2θ = 3(cot2θ - cos2θ) then the value of $${\left( {\frac{1}{2}\sec \theta  + \sin \theta } \right)^{ - 1}}$$   is:
						
					83. The value of $$\frac{{\sin A}}{{\cot A + {\text{cosec}}\,A}} - \frac{{\sin A}}{{\cot A - {\text{cosec}}\,A}} - 1{\text{ is:}}$$
						
					84. The value of sin238° + sin252° + sin230° - tan245° is equal to:
						
					85. If secθ + tanθ = p, (p > 1) then $$\frac{{{\text{cosec}}\,\theta  + 1}}{{{\text{cosec}}\,\theta  - 1}} = ?$$
						
					86. If 1 + cot2θ = $$\frac{{625}}{{49}}$$ and θ is acute, then what is the value of $${\left( {\sin \theta  + \cos \theta } \right)^{\frac{1}{2}}}?$$
						
					87. What is the value of cosec(65° + θ) - sec(25° - θ) + tan220° - cosec270°?
						
					88. The value of $$\frac{{2\left( {{{\sin }^6}\theta  + {{\cos }^6}\theta } \right) - 3\left( {{{\sin }^4}\theta  + {{\cos }^4}\theta } \right)}}{{{{\cos }^4}\theta  - {{\sin }^4}\theta  - 2{{\cos }^2}\theta }}{\text{ is:}}$$
						
					89. The value of $$\frac{{{{\sec }^2}\theta }}{{{\text{cose}}{{\text{c}}^2}\theta }} + \frac{{{\text{cose}}{{\text{c}}^2}\theta }}{{{{\sec }^2}\theta }} - \left( {{{\sec }^2}\theta  + {\text{cose}}{{\text{c}}^2}\theta } \right){\text{is:}}$$
						
					90. If (2cosA + 1)(2cosA - 1) = 0, 0° < A ≤ 90°, then find the value of A.
						
					Read More Section(Trigonometry)
Each Section contains maximum 100 MCQs question on Trigonometry. To get more questions visit other sections.

