Assuming \[{\text{i}} = \sqrt { - 1} \] and t is a real number, \[\int\limits_0^{\frac{\pi }{3}} {{{\text{e}}^{{\text{it}}}}} {\text{dt}}\] is
A. \[\frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}\]
B. \[\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}\]
C. \[\frac{1}{2} + {\text{i}}\left( {\frac{{\sqrt 3 }}{2}} \right)\]
D. \[\frac{1}{2} + {\text{i}}\left( {1 - \frac{{\sqrt 3 }}{2}} \right)\]
Answer: Option A
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion