Assuming zero initial condition, the response y(t) of the system given below to a unit step input u(t) is
\[\xrightarrow{{U\left( s \right)}}\boxed{\frac{1}{s}}\xrightarrow{{Y\left( s \right)}}\]
A. u(t)
B. tu(t)
C. $$\frac{{{t^2}}}{2}u\left( t \right)$$
D. e-tu(t)
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β
Join The Discussion