Boundary layer separation is caused by the
A. Reduction of pressure to vapour pressure
B. Boundary layer thickness reducing to zero
C. Adverse pressure gradient
D. Reduction of pressure gradient to zero
Answer: Option D
A. Reduction of pressure to vapour pressure
B. Boundary layer thickness reducing to zero
C. Adverse pressure gradient
D. Reduction of pressure gradient to zero
Answer: Option D
A. Thermal conductivity
B. Electrical conductivity
C. Specific gravity
D. Electrical resistivity
A. $$\frac{{\text{V}}}{{{{\text{V}}_{\max }}}} = {\left( {\frac{{\text{x}}}{{\text{r}}}} \right)^{\frac{1}{7}}}$$
B. $$\frac{{\text{V}}}{{{{\text{V}}_{\max }}}} = {\left( {\frac{{\text{r}}}{{\text{x}}}} \right)^{\frac{1}{7}}}$$
C. $$\frac{{\text{V}}}{{{{\text{V}}_{\max }}}} = {\left( {{\text{x}} \times {\text{r}}} \right)^{\frac{1}{7}}}$$
D. None of these
A. d
B. $$\frac{1}{{\text{d}}}$$
C. $$\sigma $$
D. $$\frac{l}{\sigma }$$
A. $$\frac{{4\pi {\text{g}}}}{3}$$
B. $$\frac{{0.01\pi {\text{gH}}}}{4}$$
C. $$\frac{{0.01\pi {\text{gH}}}}{8}$$
D. $$\frac{{0.04\pi {\text{gH}}}}{3}$$
Boundary layer separation is primarily caused by an adverse pressure gradient, where the pressure increases in the direction of flow. This adverse pressure gradient causes the fluid particles in the boundary layer to slow down more rapidly than due to friction alone, eventually leading them to stop or even reverse direction near the wall. Option C is corrected
Right answer is Option C