Changing the order of the integration in the double integral \[{\text{I}} = \int\limits_0^8 {\int\limits_{\frac{{\text{x}}}{4}}^2 {{\text{f}}\left( {{\text{x,}}\,{\text{y}}} \right){\text{dydx}}} } \] leads to \[{\text{I}} = \int\limits_{\text{r}}^{\text{s}} {\int\limits_{\text{p}}^{\text{q}} {{\text{f}}\left( {{\text{x,}}\,{\text{y}}} \right){\text{dx dy}}} .} \] What is q?
A. 4y
B. 16y2
C. x
D. 8
Answer: Option A
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion