Consider a 2 × 2 square matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} \sigma &{\text{x}} \\ \omega &\sigma \end{array}} \right]\] where x is unknown. If the eigen values of the matrix A are \[\left( {\sigma + {\text{j}}\omega } \right)\] and \[\left( {\sigma - {\text{j}}\omega } \right)\] , then x is equal to
A. \[ + {\text{j}}\omega \]
B. \[ - {\text{j}}\omega \]
C. \[ + \omega \]
D. \[ - \omega \]
Answer: Option D
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2

Join The Discussion