Consider a 3 × 3 real symmetric matrix S such that two of its eigen values are a ≠ 0, b ≠ 0 with respective eigen vectors \[\left[ {\begin{array}{*{20}{c}} {{{\text{x}}_1}} \\ {{{\text{x}}_2}} \\ {{{\text{x}}_3}} \end{array}} \right],\left[ {\begin{array}{*{20}{c}} {{{\text{y}}_1}} \\ {{{\text{y}}_2}} \\ {{{\text{y}}_3}} \end{array}} \right].\] If a ≠ b then x1y1 + x2y2 + x3y3 equals
A. a
B. b
C. ab
D. 0
Answer: Option D
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2

Join The Discussion