Examveda

Consider a particle of mass m moving in a one-dimensional box under the potential V = 0 for 0 ≤ x ≤ a and V = $$\infty $$ outside the box. When the particle is in its lowest energy state, the average momentum (< px >) of the particle is

A. $$ < {p_x} > = 0$$

B. $$ < {p_x} > = \frac{h}{a}$$

C. $$ < {p_x} > = \frac{h}{{2a}}$$

D. $$ < {p_x} > = \frac{h}{{2\pi a}}$$

Answer: Option A


This Question Belongs to Engineering Chemistry >> Atomic Structure

Join The Discussion

Related Questions on Atomic Structure

The vibrational partition function for a molecule which can be described as a simple harmonic oscillator with fundamental frequency $$\nu $$ is given by

A. $$\exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)$$

B. $${\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$

C. $$\exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right){\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$

D. $$\exp \left( { - \frac{{h\nu }}{{2{K_B}T}}} \right){\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$