Consider a real-valued base-band signal x(t), band limited to 10 kHz. The Nyquist rate for the signal $${\text{y}}\left( {\text{t}} \right) = {\text{x}}\left( {\text{t}} \right){\text{x}}\left( {1 + \frac{{\text{t}}}{2}} \right)$$ is
A. 15 kHz
B. 30 kHz
C. 60 kHz
D. 20 kHz
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion