Consider a six-point decimation-in-time Fast Fourier Transform (FFT) algorithm, for which the signal-flow graph corresponding to X[I] is shown in the figure. Let $${W_6} = \exp \left( { - \frac{{j2\pi }}{6}} \right).$$ In the figure, what should be the values of the coefficients a1, a2, a3 in terms of W6 so that X[I] is obtained correctly?

A. $${a_1} = 1,{a_2} = W_6^2,{a_3} = {W_6}$$
B. $${a_1} = - 1,{a_2} = W_6^2,{a_3} = {W_6}$$
C. $${a_1} = - 1,{a_2} = {W_6},{a_3} = W_6^2$$
D. $${a_1} = 1,{a_2} = {W_6},{a_3} = W_6^2$$
Answer: Option D
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion