Consider likely applicability of Cauchy's Integral Theorem to evaluate the following integral counter clockwise around the unit circle c.
$$I = \oint\limits_{\text{c}} {\sec {\text{z}}} {\text{dz,}}$$ z being a complex variable. The value of $$I$$ will be
A. $$I$$ = 0 : singularities set = $$\phi $$
B. $$I$$ = 0 : singularities set = $$\left\{ { \pm \frac{{2{\text{n}} + 1}}{2}\pi ;\,{\text{n}} = 0,\,1,\,2\,...} \right\}$$
C. $$I = \frac{\pi }{2}:$$ singularities set = $$\left\{ { \pm {\text{n}}\pi ;\,{\text{n}} = 0,\,1,\,2\,...} \right\}$$
D. None of above
Answer: Option A
Join The Discussion