Consider the differential equation $$\frac{{{{\text{d}}^2}{\text{y}}\left( {\text{t}} \right)}}{{{\text{d}}{{\text{t}}^2}}} + 2\frac{{{\text{dy}}\left( {\text{t}} \right)}}{{{\text{dt}}}} + {\text{y}}\left( {\text{t}} \right) = \delta \left( {\text{t}} \right)$$ with $${\left. {{\text{y}}\left( {\text{t}} \right)} \right|_{{\text{t}} = 0}} = - 2$$ and $${\left. {\frac{{{\text{dy}}}}{{{\text{dt}}}}} \right|_{{\text{t}} = 0}} = 0.$$
The numerical value of $${\left. {\frac{{{\text{dy}}}}{{{\text{dt}}}}} \right|_{{\text{t}} = 0}}$$ is
A. -2
B. -1
C. 0
D. 1
Answer: Option D
A. $$\frac{1}{{{\text{s}} + {\text{a}}}}$$
B. $$\frac{1}{{{\text{s}} - {\text{a}}}}$$
C. $$\frac{1}{{{\text{a}} - {\text{s}}}}$$
D. $$\infty $$
Evaluate $$\int\limits_0^\infty {\frac{{\sin {\text{t}}}}{{\text{t}}}{\text{dt}}} $$
A. $$\pi $$
B. $$\frac{\pi }{2}$$
C. $$\frac{\pi }{4}$$
D. $$\frac{\pi }{8}$$
A. $$\frac{{1 + {{\text{s}}^2}}}{{{{\left( {{{\text{s}}^2} - 1} \right)}^2}}}$$
B. $$\frac{{{\text{st}}}}{{\left( {{{\text{s}}^2} - 1} \right)}}$$
C. $$\frac{{1 - {{\text{s}}^2}}}{{{{\left( {{{\text{s}}^2} - 1} \right)}^2}}}$$
D. $$\frac{{1 + {{\text{s}}^2}}}{{1 - {{\text{s}}^2}}}$$
A. $$\frac{2}{{{\text{s}} + 1}}$$
B. $$\frac{4}{{{\text{s}} + 1}}$$
C. $$\frac{4}{{{{\text{s}}^2} + 1}}$$
D. $$\frac{2}{{{{\text{s}}^2} + 1}}$$

Join The Discussion