Consider the following equations
\[\begin{gathered}
  \frac{{\partial {\text{V}}\left( {{\text{x, y}}} \right)}}{{\partial {\text{x}}}} = {\text{p}}{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{xy}} \hfill \\
  \frac{{\partial {\text{V}}\left( {{\text{x, y}}} \right)}}{{\partial {\text{y}}}} = {{\text{x}}^2} + {\text{q}}{{\text{y}}^2} + 2{\text{xy}} \hfill \\ 
\end{gathered} \]
where p and q are constants. V(x, y) that satisfies the above equations is
        A. \[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + 2{\text{xy}} + 6\]
B. \[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + 5\]
C. \[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + {{\text{x}}^2}{\text{y}} + {\text{x}}{{\text{y}}^2} + {\text{xy}}\]
D. \[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + {{\text{x}}^2}{\text{y}} + {\text{x}}{{\text{y}}^2}\]
Answer: Option D
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion