Consider the function f(t) having Laplace transform $$F\left( s \right) = \frac{{{\omega _0}}}{{{s^2} + \omega _0^2}}\operatorname{Re} \left[ s \right] > 0$$
The final value of f(t) would be:
A. 0
B. 1
C. -1 ≤ f(∞) ≤ 1
D. ∞
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion