Consider the function f(x) = sin (x) in the interval \[{\text{x}} \in \left[ {\frac{\pi }{4},\,\frac{{7\pi }}{4}} \right].\] The number and location(s) of the local minima of this function are
A. One, at \[\frac{\pi }{2}\]
B. One, at \[\frac{{3\pi }}{2}\]
C. Two, at \[\frac{\pi }{2}\] and \[\frac{{3\pi }}{2}\]
D. Two, at \[\frac{\pi }{4}\] and \[\frac{{3\pi }}{2}\]
Answer: Option B
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion