Consider the line integral $$I = \int_{\text{c}} {\left( {{{\text{x}}^2} + {\text{i}}{{\text{y}}^2}} \right){\text{dz,}}} $$ where z = x + iy. The line c is shown in the figure below

The value of $$I$$ is
A. $$\frac{1}{2}{\text{i}}$$
B. $$\frac{2}{3}{\text{i}}$$
C. $$\frac{3}{4}{\text{i}}$$
D. $$\frac{4}{5}{\text{i}}$$
Answer: Option B
Related Questions on Complex Variable
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$

Join The Discussion