Consider the signal \[X\left( t \right) = \left\{ \begin{gathered}
2\cos \left( t \right) + \cos \left( {2t} \right);\,\,\,t < 0 \hfill \\
2\sin \left( t \right) + \sin \left( {2t} \right);\,\,\,t \leqslant 0 \hfill \\
\end{gathered} \right.\]
The signal X(t) is
A. periodic with period 2π
B. periodic with period π
C. non-periodic
D. periodic with period $$\frac{\pi }{2}$$
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion