Consider this variant of the Fibonacci system:
y[n] = y[n - 1] - y[n - 2] + x[n], where x[n] represents the input and y[n] represents the output. The poles of the given system will be:
A. 1, 2
B. 0, 1, 2
C. $${e^{j\frac{\pi }{3}}},\,{e^{ - j\frac{\pi }{3}}}$$
D. $${e^{j\frac{\pi }{3}}},\,{e^{ - j\frac{\pi }{3}}},\,0$$
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β
Join The Discussion