Consider two particles with position vectors $$\overrightarrow {{{\bf{r}}_1}} $$ and $$\overrightarrow {{{\bf{r}}_2}} $$ . The force exerted by particle 2 on particle 1 is $$\overrightarrow {\bf{F}} \left( {\overrightarrow {{{\bf{r}}_1}} ,\,\overrightarrow {{{\bf{r}}_2}} } \right) = \left( {{{{\bf{\dot r}}}_2} - {{{\bf{\dot r}}}_1}} \right)\left( {{r_2} - {r_1}} \right).$$ The force is
A. central and conservative
B. non-central and conservative
C. central and non-conservative
D. non-central and non-conservative
Answer: Option D
Related Questions on Classical Mechanics
A. increases till mass falls into hole
B. decreases till mass falls into hole
C. remains constant
D. becomes zero at radius r1, where 0 < r1 < r0
A. $$\frac{c}{3}$$
B. $$\frac{{\sqrt 2 }}{3}c$$
C. $$\frac{c}{2}$$
D. $$\frac{{\sqrt 3 }}{2}c$$
The Hamiltonian corresponding to the Lagrangian $$L = a{{\dot x}^2} + b{{\dot y}^2} - kxy$$ is
A. $$\frac{{{p_x}^2}}{{2a}} + \frac{{{p_y}^2}}{{2b}} + kxy$$
B. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} - kxy$$
C. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} + kxy$$
D. $$\frac{{{p_x}^2 + {p_y}^2}}{{4ab}} + kxy$$
A. circular
B. elliptical
C. parabolic
D. hyperbolic


Join The Discussion