Directional derivative of \[\phi \] = 2xz - y2 at the point (1, 3, 2) becomes maximum in the direction of:
A. \[{\rm{4\hat i}} + 2{\rm{\hat j}} - 3{\rm{\hat k}}\]
B. \[{\rm{4\hat i}} - 6{\rm{\hat j}} + 2{\rm{\hat k}}\]
C. \[{\rm{2\hat i}} - 6{\rm{\hat j}} + 2{\rm{\hat k}}\]
D. \[{\rm{4\hat i}} - 6{\rm{\hat j}} - 2{\rm{\hat k}}\]
Answer: Option B
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion