Divergence of vector field \[\overrightarrow {\rm{V}} \left( {{\rm{x}},\,{\rm{y}},\,{\rm{z}}} \right) = - \left( {{\rm{x}}\cos {\rm{xy}} + {\rm{y}}} \right){\rm{\hat i}} + \left( {{\rm{y}}\cos {\rm{xy}}} \right){\rm{\hat j}} + \left[ {\left( {\sin {{\rm{z}}^2}} \right) + {{\rm{x}}^2} + {{\rm{y}}^2}} \right]{\rm{\hat k}}\] is
A. 2z cos z2
B. sin xy + 2z cos z2
C. x sin xy - cos z
D. None of these
Answer: Option A
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion