41.
For a small value of h, the Taylor series expansion for f(x + h) is

43.
The right circular cone of largest volume that can be enclosed by a sphere of 1 m radius has a height of

46.
The derivative of f(x) = cos x can be estimated using the approximation \[{\text{f}}'\left( {\text{x}} \right) = \frac{{{\text{f}}\left( {{\text{x}} + {\text{h}}} \right) - {\text{f}}\left( {{\text{x}} - {\text{h}}} \right)}}{{2{\text{h}}}}.\]
The percentage error is calculated as \[\left( {\frac{{{\text{Exact value}} - {\text{Approx value}}}}{{{\text{Exact value}}}} \times 100} \right)\]
The percentage error in the derivative of f(x) at \[{\text{x}} = \frac{\pi }{6}\]  radian choosing h = 0.1 radian is

47.
If \[\overrightarrow {\rm{A}} = {\rm{xy}}{{{\rm{\hat a}}}_{\rm{x}}} + {{\rm{x}}^2}{{{\rm{\hat a}}}_{\rm{y}}},\,\oint\limits_{\rm{c}} {\overrightarrow {\rm{A}} \cdot {\rm{d}}\overrightarrow l } \]     over the path shown in the figure is
Calculus mcq question image

Read More Section(Calculus)

Each Section contains maximum 100 MCQs question on Calculus. To get more questions visit other sections.