Solution(By Examveda Team)
$$\eqalign{
& a + \frac{1}{b} = 1{\text{ }} \cr
& \Rightarrow ab + 1 = b \cr
& \Rightarrow ab - b = - 1 \cr
& \Rightarrow b\left( {a - 1} \right) = - 1 \cr
& \Rightarrow b = \frac{1}{{\left( {1 - a} \right)}} \cr
& \cr
& b + \frac{1}{c} = 1 \cr
& \Rightarrow bc + 1 = c \cr
& \Rightarrow bc - c = - 1 \cr
& \Rightarrow c\left( {b - 1} \right) = - 1 \cr
& \Rightarrow c = \frac{1}{{\left( {1 - b} \right)}} \cr
& \cr
& \therefore c + \frac{1}{a} = \frac{1}{{\left( {1 - b} \right)}} + \frac{1}{a} \cr
& c + \frac{1}{a} = \frac{1}{{1 - \left( {\frac{1}{{1 - a}}} \right)}} + \frac{1}{a} \cr
& c + \frac{1}{a} = \frac{1}{{\frac{{\left( {1 - a} \right) - 1}}{{\left( {1 - a} \right)}}}} + \frac{1}{a} \cr
& c + \frac{1}{a} = \frac{{\left( {1 - a} \right)}}{{ - a}} + \frac{1}{a} \cr
& c + \frac{1}{a} = \frac{{\left( {a - 1} \right)}}{a} + \frac{1}{a} \cr
& c + \frac{1}{a} = \frac{{a - 1 + 1}}{a} \cr
& c + \frac{1}{a} = \frac{a}{a} \cr
& c + \frac{1}{a} = 1 \cr} $$
Join The Discussion