Examveda Find $$\cos \left( { - \frac{{7\pi }}{2}} \right) = ?$$ A. $$\frac{1}{2}$$B. 1C. -1Answer: Option D Solution (By Examveda Team) $$\eqalign{ & \cos \left( { - \frac{{7\pi }}{2}} \right) \cr & = \cos 7 \times \frac{{180}}{2} \cr & = \cos 630 \cr & = \cos \left( {2 \times 360 - 90} \right) \cr & = \cos 90 \cr & = 0 \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & \cos \left( { - \frac{{7\pi }}{2}} \right) \cr & = \cos 7 \times \frac{{180}}{2} \cr & = \cos 630 \cr & = \cos \left( {2 \times 360 - 90} \right) \cr & = \cos 90 \cr & = 0 \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion