For a function g(t), it is given that
$$\int\limits_{ - \infty }^{ + \infty } {g\left( t \right){e^{ - j\omega t}}dt = \omega {e^{ - 2{\omega ^2}}}} $$ for any real value $$\omega $$ . If $$y\left( t \right) = \int\limits_{ - \infty }^t {g\left( \tau \right)} d\tau ,\,{\rm{then}}\,\int\limits_{ - \infty }^{ + \infty } {y\left( t \right)} dt$$ is. . . . . . . .
A. 0
B. -j
C. $$ - {j \over 2}$$
D. $${j \over 2}$$
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion