For a function g(t), it is given that
$$\int\limits_{ - \infty }^{ + \infty } {g\left( t \right){e^{ - j\omega t}}dt = \omega {e^{ - 2{\omega ^2}}}} $$ for any real value $$\omega $$ . If $$y\left( t \right) = \int\limits_{ - \infty }^t {g\left( \tau \right)} d\tau ,\,{\rm{then}}\,\int\limits_{ - \infty }^{ + \infty } {y\left( t \right)} dt$$ is. . . . . . . .
A. 0
B. -j
C. $$ - {j \over 2}$$
D. $${j \over 2}$$
Answer: Option B
Join The Discussion