Examveda

For a position vector \[{\rm{r}} = {\rm{x\hat i}} + {\rm{y\hat j}} + {\rm{z\hat k}}\]    the norm of the vector can be defined as $$\left| {\overrightarrow {\text{r}} } \right| = \sqrt {{{\text{x}}^2} + {{\text{y}}^2} + {{\text{z}}^2}} .$$     Given a function $$\phi = \ln \left| {\overrightarrow {\text{r}} } \right|,$$   its gradient $$\nabla \phi $$  is

A. $$\overrightarrow {\text{r}} $$

B. $$\frac{{\overrightarrow {\text{r}} }}{{\left| {\overrightarrow {\text{r}} } \right|}}$$

C. $$\frac{{\overrightarrow {\text{r}} }}{{\overrightarrow {\text{r}} \cdot \overrightarrow {\text{r}} }}$$

D. $$\frac{{\overrightarrow {\text{r}} }}{{{{\left| {\overrightarrow {\text{r}} } \right|}^3}}}$$

Answer: Option C


This Question Belongs to Engineering Maths >> Calculus

Join The Discussion

Related Questions on Calculus