For a simple harmonic oscillator, the Lagrangian is $$L = \frac{1}{2}{{\dot q}^2} - \frac{1}{2}{q^2},\,{\text{if }}A\left( {p,\,q} \right) = \frac{{p + iq}}{2}$$ and H(p, q) is the Hamiltonian of the system, the Poisson bracket, {A(p, q), H(p, q)} is given by
A. iA (p, q)
B. A∗ (p, q)
C. -iA∗ (p, q)
D. -iA (p, q)
Answer: Option A
Related Questions on Classical Mechanics
A. increases till mass falls into hole
B. decreases till mass falls into hole
C. remains constant
D. becomes zero at radius r1, where 0 < r1 < r0
A. $$\frac{c}{3}$$
B. $$\frac{{\sqrt 2 }}{3}c$$
C. $$\frac{c}{2}$$
D. $$\frac{{\sqrt 3 }}{2}c$$
The Hamiltonian corresponding to the Lagrangian $$L = a{{\dot x}^2} + b{{\dot y}^2} - kxy$$ is
A. $$\frac{{{p_x}^2}}{{2a}} + \frac{{{p_y}^2}}{{2b}} + kxy$$
B. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} - kxy$$
C. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} + kxy$$
D. $$\frac{{{p_x}^2 + {p_y}^2}}{{4ab}} + kxy$$
A. circular
B. elliptical
C. parabolic
D. hyperbolic


Join The Discussion