Examveda

For a small value of h, the Taylor series expansion for f(x + h) is

A. \[{\text{f}}\left( {\text{x}} \right) + {\text{hf}}'\left( {\text{x}} \right) + \frac{{{{\text{h}}^2}}}{2}{\text{f}}''\left( {\text{x}} \right) + \frac{{{{\text{h}}^3}}}{3}{\text{f}}''\left( {\text{x}} \right) + \,...\,\infty \]

B. \[{\text{f}}\left( {\text{x}} \right) - {\text{hf}}'\left( {\text{x}} \right) + \frac{{{{\text{h}}^2}}}{{2!}}{\text{f}}''\left( {\text{x}} \right) - \frac{{{{\text{h}}^3}}}{{3!}}{\text{f}}''\left( {\text{x}} \right) + \,...\,\infty \]

C. \[{\text{f}}\left( {\text{x}} \right) + {\text{hf}}'\left( {\text{x}} \right) + \frac{{{{\text{h}}^2}}}{{2!}}{\text{f}}''\left( {\text{x}} \right) + \frac{{{{\text{h}}^3}}}{{3!}}{\text{f}}''\left( {\text{x}} \right) + \,...\,\infty \]

D. \[{\text{f}}\left( {\text{x}} \right) - {\text{hf}}'\left( {\text{x}} \right) + \frac{{{{\text{h}}^2}}}{2}{\text{f}}''\left( {\text{x}} \right) - \frac{{{{\text{h}}^3}}}{3}{\text{f}}''\left( {\text{x}} \right) + \,...\,\infty \]

Answer: Option C


This Question Belongs to Engineering Maths >> Calculus

Join The Discussion

Related Questions on Calculus