Examveda

For given matrix \[{\text{P}} = \left[ {\begin{array}{*{20}{c}} {4 + 3{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{4 - 3{\text{i}}} \end{array}} \right]\]    where \[{\text{i}} = \sqrt { - 1} ,\]   the inverse of matrix P is

A. \[\frac{1}{{24}}\left[ {\begin{array}{*{20}{c}} {4 - 3{\text{i}}}&{\text{i}} \\ { - {\text{i}}}&{4 + 3{\text{i}}} \end{array}} \right]\]

B. \[\frac{1}{{25}}\left[ {\begin{array}{*{20}{c}} {\text{i}}&{4 - {\text{i}}} \\ {4 + 3{\text{i}}}&{ - {\text{i}}} \end{array}} \right]\]

C. \[\frac{1}{{24}}\left[ {\begin{array}{*{20}{c}} {4 + 3{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{4 - 3{\text{i}}} \end{array}} \right]\]

D. \[\frac{1}{{25}}\left[ {\begin{array}{*{20}{c}} {4 + 3{\text{i}}}&{ - {\text{i}}} \\ {\text{i}}&{4 - 3{\text{i}}} \end{array}} \right]\]

Answer: Option A


This Question Belongs to Engineering Maths >> Linear Algebra

Join The Discussion

Related Questions on Linear Algebra