For the matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 5&3 \\ 1&3 \end{array}} \right],\] ONE of the normalized eigen vectors is given as
A. \[\left( {\begin{array}{*{20}{c}} {\frac{1}{2}} \\ {\frac{{\sqrt 3 }}{2}} \end{array}} \right)\]
B. \[\left( {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}} \\ {\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right)\]
C. \[\left( {\begin{array}{*{20}{c}} {\frac{3}{{\sqrt {10} }}} \\ {\frac{{ - 1}}{{\sqrt {10} }}} \end{array}} \right)\]
D. \[\left( {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 5 }}} \\ {\frac{2}{{\sqrt 5 }}} \end{array}} \right)\]
Answer: Option B
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2

Join The Discussion