For the two functions, f(x, y) = x3 - 3xy2 and g(x, y) = 3x2y - y2, which one of the following options is correct?
A. \[\frac{{\partial {\text{f}}}}{{\partial {\text{x}}}} = \frac{{\partial {\text{g}}}}{{\partial {\text{x}}}}\]
B. \[\frac{{\partial {\text{f}}}}{{\partial {\text{x}}}} = \frac{{ - \partial {\text{g}}}}{{\partial {\text{x}}}}\]
C. \[\frac{{\partial {\text{f}}}}{{\partial {\text{y}}}} = \frac{{ - \partial {\text{g}}}}{{\partial {\text{x}}}}\]
D. \[\frac{{\partial {\text{f}}}}{{\partial {\text{y}}}} = \frac{{\partial {\text{g}}}}{{\partial {\text{x}}}}\]
Answer: Option C
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion