Solution (By Examveda Team)
$$\eqalign{
& \frac{{{\text{tan}}\theta }}{{1 - {\text{cot}}\theta }} + \frac{{{\text{cot}}\theta }}{{1 - {\text{tan}}\theta }} \cr
& \Rightarrow \frac{{{\text{tan}}\theta }}{{1 - \frac{1}{{\tan \theta }}}} + \frac{{\frac{1}{{\tan \theta }}}}{{1 - {\text{tan}}\theta }} \cr
& \Rightarrow \frac{{{\text{ta}}{{\text{n}}^2}\theta }}{{{\text{tan}}\theta - 1}} + \frac{1}{{{\text{tan}}\theta \left( {1 - \tan \theta } \right)}} \cr
& \Rightarrow \frac{{{\text{tan}}^2\theta }}{{{\text{tan}}\theta - 1}} - \frac{1}{{{\text{tan}}\theta \left( {\tan \theta - 1} \right)}} \cr
& \Rightarrow \frac{{{\text{ta}}{{\text{n}}^3}\theta - 1}}{{{\text{tan}}\theta \left( {\tan \theta - 1} \right)}} \cr
& \Rightarrow \frac{{\left( {{\text{tan}}\theta - 1} \right)\left( {{\text{ta}}{{\text{n}}^2}\theta + {\text{tan}}\theta + {\text{1}}} \right)}}{{{\text{tan}}\theta \left( {\tan \theta - 1} \right)}} \cr
& \Rightarrow \frac{{{\text{ta}}{{\text{n}}^2}\theta + {\text{tan}}\theta + {\text{1}}}}{{{\text{tan}}\theta }} \cr
& \Rightarrow {\text{tan}}\theta + \cot \theta + {\text{1}} \cr} $$
Join The Discussion