$$\frac{{{\text{tan}}\theta + \cot \theta }}{{{\text{tan}}\theta - \cot \theta }} = 2,$$ $$\left( {0 \leqslant \theta \leqslant {{90}^ \circ }} \right),$$ then the value of $$\sin \theta $$ is?
A. $$\frac{2}{{\sqrt 3 }}$$
B. $$\frac{{\sqrt 3 }}{2}$$
C. $$\frac{1}{2}$$
D. 1
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{
& \frac{{{\text{tan}}\theta + \cot \theta }}{{{\text{tan}}\theta - \cot \theta }} = 2 \cr
& {\text{By componendo and dividendo}} \cr
& \Rightarrow \frac{{2{\text{tan}}\theta }}{{2{\text{cos}}\theta }} = \frac{3}{1} \cr
& \Rightarrow \frac{{\sin \theta }}{{{\text{cos}}\theta }} \times \frac{{\sin \theta }}{{{\text{cos}}\theta }} = 3 \cr
& \Rightarrow {\sin ^2}\theta = 3{\text{co}}{{\text{s}}^2}\theta \cr
& \Rightarrow {\sin ^2}\theta = 3\left( {1 - {{\sin }^2}\theta } \right) \cr
& \Rightarrow 4{\sin ^2}\theta = 3 \cr
& \Rightarrow {\sin ^2}\theta \Rightarrow \frac{3}{4} \cr
& \Rightarrow {\text{sin }}\theta = \frac{{\sqrt 3 }}{2} \cr
& \cr
& {\bf{Alternate:}} \cr
& \Rightarrow \frac{{{\text{tan}}\theta + \cot \theta }}{{{\text{tan}}\theta - \cot \theta }} = 2 \cr
& {\text{By C and D}} \cr
& \Rightarrow \frac{{{\text{tan}}\theta }}{{\cot \theta }} = \frac{3}{1} \cr
& \Rightarrow {\text{ta}}{{\text{n}}^2}\theta = 3 \cr
& \Rightarrow {\text{tan}}\theta = \sqrt 3 \cr
& \theta = {60^ \circ } \cr
& \Rightarrow \sin \theta \cr
& \Rightarrow {\text{sin }}{60^ \circ } \cr
& \Rightarrow \frac{{\sqrt 3 }}{2} \cr} $$
Join The Discussion