f(x, y) is a continuous function defined over (x, y) \[ \in \] [0, 1] × [0, 1]. Given the two constraints, x > y2 and y > x2, the volume under f(x, y) is
A. \[\int\limits_{{\text{y}} = 0}^{{\text{y}} = 1} {\int\limits_{{\text{x}} = {{\text{y}}^2}}^{{\text{x}} = \sqrt {\text{y}} } {{\text{f}}\left( {{\text{x,}}\,{\text{y}}} \right){\text{dx dy}}} } \]
B. \[\int\limits_{{\text{y}} = {{\text{x}}^2}}^{{\text{y}} = 1} {\int\limits_{{\text{x}} = {{\text{y}}^2}}^{{\text{x}} = 1} {{\text{f}}\left( {{\text{x,}}\,{\text{y}}} \right){\text{dx dy}}} } \]
C. \[\int\limits_{{\text{y}} = 0}^{{\text{y}} = 1} {\int\limits_{{\text{x}} = 0}^{{\text{x}} = 1} {{\text{f}}\left( {{\text{x,}}\,{\text{y}}} \right){\text{dx dy}}} } \]
D. \[\int\limits_{{\text{y}} = 0}^{{\text{y}} = \sqrt {\text{x}} } {\int\limits_{{\text{x}} = 0}^{{\text{x}} = \sqrt {\text{y}} } {{\text{f}}\left( {{\text{x,}}\,{\text{y}}} \right){\text{dx dy}}} } \]
Answer: Option A
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion