Given a vector field \[\overrightarrow {\rm{F}} = {{\rm{y}}^2}{\rm{x}}{{{\rm{\hat a}}}_{\rm{x}}} - {\rm{yz}}{{{\rm{\hat a}}}_{\rm{y}}} - {{\rm{x}}^2}{{{\rm{\hat a}}}_{\rm{z}}},\] the line integral \[\int {\overrightarrow {\text{F}} \cdot \overrightarrow {{\text{d}}l} } \] evaluated along a segment on the x-axis from x = 1 to x = 2 is
A. -2.33
B. 0
C. 2.33
D. 7
Answer: Option B
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion