Examveda

Given a vector \[\overline {\rm{u}} = \frac{1}{3}\left( { - {{\rm{y}}^3}{\rm{\hat i}} + {{\rm{x}}^3}{\rm{\hat j}} + {{\rm{z}}^3}{\rm{\hat k}}} \right)\]     and \[{{\rm{\hat n}}}\] as the unit normal vector to the surface of the hemisphere (x2 + y2 + z2 = 1; z ≥ 0), the value of integral \[\int {\left( {\nabla \times \overline {\rm{u}} } \right) \cdot {\rm{\hat n}}} {\rm{dS}}\]    evaluated on the curved surface of the hemisphere S is

A. \[\pi \]

B. \[\frac{\pi }{2}\]

C. \[\frac{{ - \pi }}{2}\]

D. \[\frac{\pi }{3}\]

Answer: Option B


This Question Belongs to Engineering Maths >> Calculus

Join The Discussion

Related Questions on Calculus